Notizen

Addition von Pentacarbonylrhenat an koordiniertes Benzol: Ein σ,π -verbrückter, dynamischer Cyclohexadienyl-Komplex, (OC)₅Re- μ -(η^1 : η^5 -C₆H₆)Mn(CO)₃

Burkhard Niemer, Manfred Steimann und Wolfgang Beck*

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 31. Mai 1988

Addition of Pentacarbonylrhenate to Coordinated Benzene: A σ,π -Bridged, Fluxional Cyclohexadienyl Complex, (OC)₅Re- μ - $(\eta^1:\eta^5-C_6H_6)Mn(CO)_3$

Nucleophilic addition of pentacarbonylrhenate to coordinated benzene in $[(\eta^6-C_6H_6)Mn(CO)_3]^+$ gives the $\eta^1:\eta^5$ -cyclohexadienyl-bridged title compound 1. The structure of 1 has been determined by X-ray analysis. 1 is the first example of fluxional behaviour in η^5 -cyclohexadienyl complexes.

Die Addition von Nucleophilen an koordinierte, ungesättigte und aromatische Kohlenwasserstoffe ist eine der grundlegenden Reaktionstypen in der metallorganischen Chemie¹⁾. Der Einsatz von Carbonylmetallaten anstelle von üblichen Nucleophilen hat zu einer Reihe von neuartigen Kohlenwasserstoff-verbrückten Komplexen^{2,3)} geführt.

Wir fanden nun, daß sich Carbonylmetallate sogar an Benzol in kationischen Komplexen addieren lassen. Die Umsetzung von Pentacarbonylrhenat mit $[(\eta^6-C_6H_6)Mn(CO)_3]^+$ liefert den σ,π -Kohlenwasserstoff-verbrückten Komplex 1⁴).

Als Nebenprodukt wurde $Re_2(CO)_{10}$ gefunden. Für die Bildung von 1 ist vor allem die vergleichsweise stabile Rhenium-Kohlenstoff- σ -Bindung⁵ verantwortlich. Mit anderen metallorganischen Nucleophilen wie $[Fe(CO)_2(\eta^5-C_5H_5)]^-$ treten Redox-Reaktionen in den Vordergrund.

Die Kristallstrukturbestimmung zeigt die exo-Stellung der Re(CO)₅-Gruppe in 1 (Abb. 1).

Die Molekül-Struktur im Kristall von 1 läßt sich als Ohrensessel (allerdings mit nur drei Beinen) beschreiben; zwei Re-C-O-Gruppen stehen symmetrisch über dem C₆H₆-Ring. Die C-C-Abstände im Liganden und seine Deformation sind vergleichbar mit denen in einkernigen Cyclohexadienylmetalltricarbonylen von Chrom⁶), Mangan⁷⁾ und Eisen⁶⁾. Diese Komplexe fanden in theoretischer Hinsicht Beachtung⁸⁾.

Komplex 1 erweist sich als ein Paradebeispiel für dynamisches Verhalten bei metallorganischen Verbindungen. Im ¹H-NMR-Spektrum wird bei Raumtemp. für die sechs Cyclohexadienyl-Pro-

Abb. 1. Struktur von 1 im Kristall

tonen nur ein Signal gefunden. Bei -72°C treten die für das starre Cyclohexadienyl-Gerüst zu erwartenden vier Signalgruppen des ABB'CC'D-Spin-Systems hervor. Die Koaleszenz-Temperatur liegt bei ca. -20°C (Abb. 2). Bei monometallischen Mangan-Komplexen mit Cyano- bzw. Alkyl-substituierten n⁵-Cyclohexadienyl-Liganden konnte Cyanid-9) bzw. endo-Hydrid-Wanderung¹⁰⁾ anhand sich bildender Isomere nachgewiesen werden; wegen Zersetzung bei höheren Temperaturen ließ sich ein dynamisches Verhalten jedoch nicht belegen. Verbindung 1 zersetzt sich bei Raumtemp. in [D₈]Toluol innerhalb von 1 h. Die Festsubstanz ist nur bei 0°C unter Argon über längere Zeit haltbar. Die geringe Energiebarriere für die Fluktuation in 1, die vermutlich wie bei verschiedenen Metall-σ-gebundenen Polyenylen über einen 1,2-Shift verläuft, kann auf die im Vergleich zu C-C- bzw. C-H-Bindungen deutlich schwächere Re-C-Bindung (ca. 220 kJ/mol)⁵⁾ zurückgeführt werden.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser herzlicher Dank für großzügige Förderung. Herrn Dr. U. Nagel danken wir für Diskussionen zur Kristallstrukturanalyse.

Abb. 2. ¹H-NMR-Spektren von 1 in [D₈]Toluol bei verschiedenen Temperaturen

Experimenteller Teil

Die Umsetzungen wurden unter Argon mit sorgfältig getrockneten Lösungsmitteln durchgeführt.

Tricarbonylmangan- μ - $(\eta^{1}: \eta^{5}$ -cyclohexadienyl)pentacarbonylrhenium (1): Eine gelbe Suspension von 200 mg (0.66 mmol) $\cdot [(\eta^6 C_6H_6$)Mn(CO)₃]BF₄¹¹ in 10 ml THF (-60 °C) wird unter Rühren mit einer Lösung von Na[Re(CO)₅] in 10 ml THF (Raumtemp.), die aus 354 mg (0.54 mmol) Re₂(CO)₁₀ durch Reduktion mit Natriumamalgam erhalten wird, versetzt. Nach 1 h wird das Lösungsmittel bei -25°C von der orangegelben, klaren Reaktionslösung abgezogen und der gelbbraune Rückstand kurz i. Hochvak. getrocknet. Dann wird 1 bei Raumtemp. durch mehrmaliges Digerieren (15 mal) mit je 10 ml Pentan aus dem Rückstand herausgelöst. Die ersten vier Extrakte sind mit Re₂(CO)₁₀ verunreinigt. Durch Entfernen des Lösungsmittels und mehrstündiges Trocknen i. Hochvak. wird 1 als orangegelbes Pulver isoliert. Ausb. 210 mg (59%), Zers. ab 70°C unter Rotfärbung und Sublimation von $Re_2(CO)_{10}$ - IR (Hexan): v = 2118 cm⁻¹ w, 2018 vs, 2010 vs, 1991 s, 1945 s, 1936 s (CO). - ¹H-NMR (90 MHz, [D₈]Toluol): 52°C: $\delta = 3.90$ (s); 28 °C: $\delta = 3.79$ (br.); -72 °C: $\delta = 5.31$ (t, 4-H), 3.67 (dd, 3,5-H), 3.24 (t, 1-H), 2.44 (dd, 2,6-H).

> C₁₄H₆MnO₈Re (543.3) Ber. C 30.95 H 1.11 Gef. C 30.93 H 1.36

Kristallstrukturbestimmung von 1 bei $-90^{\circ}C^{12}$: Komplex 1 wurde aus Pentan kristallisiert und ein Bruchstück der Größe 0.1 × 0.15 × 0.4 mm mit Siliconfett auf einen Glasfaden geklebt. – Kristalldaten: C₁₄H₆MnO₈Re, M = 543.3 g/mol, Raumgruppe P2₁/n (Nr. 14, nicht standard), a = 684.1 (2), b = 1311.4 (5), c = 1732.6 (5) pm, $\beta = 94.25$ (2)°, V = 1.550 (3) nm³, Z = 4, $\varrho_{ber} = 2.33$ g/cm³, μ (Mo- K_{α}) = 87.3 cm⁻¹. – Datensammlung und Auswertung: Nicolet-R3-Diffraktometer, McBtemperatur -90°C, ω -Scan, 2 Θ -Bereich 4 – 50°, Scangeschwindigkeit 4 – 30°/min (Minimum bei I <

Tab. 1. Bindungslängen [pm] und -winkel [°] von 1

Re(1)-C(1)	234.0(8)	Re(1)-C(7) 199.9(9)	
Re(1)-C(8)	199.5(8)	Re(1)-C(9) 199.1(9)	
Re(1) - C(10)	109 7(9)	Re(1)-C(11) 198 2(10)	
		M = (1) - C(3) (1) (1) (10)	
m(1) = C(2)	224.0(0)	Mn(1) = C(5) 213.3(3) Mn(1) = C(5) 213.6(9)	
Mn(1)-C(4)	209.8(8)	$Mn(1) \sim C(3) = 213.0(3)$	
Mn(1) - C(6)	226.6(8)	Mn(1) = C(12) 181.0(8)	
Mn(1)-C(13)	179.3(9)	Mn(1) - C(14) = 181.1(9)	
C(1)-C(2)	151.0(12)	C(1)-C(6) 149.9(12)	
C(2)-C(3)	139.9(11)	C(3)-C(4) 142.0(12)	
C(4)-C(5)	140.3(13)	C(5)-C(6) 138.7(12)	
C(7) - O(1)	113.4(11)	C(8)-O(2) 113.1(10)	
C(9) = O(3)	113.4(11)	C(10)-O(4) 115.5(10)	
C(11) = O(5)	114 0(12)	C(12) = O(6) 115.6(10)	
C(13) = O(7)	119 1(11)	C(14) = O(8) 114.3(11)	
C(1)-Po(1)-C(7\	C(10) = C(1) = C(1) = C(1)	79 3(3)
C(1)-Re(1)-C(C(1) = Re(1) = C(0)	97 9(3)
C(7)-Re(1)-C(8) 90.5(3	C(1) = Re(1) = C(3)	80.0(3)
C(7)-Re(1)-C(9) 176.8(3	C(8) - Re(1) - C(9)	89.0(3)
C(1)~Re(1)-C(10) 89.1(3	C(7) - Re(1) - C(10)	90.6(3)
C(8)-Re(1)-C(10) 168.3(3	C(9) - Re(1) - C(10)	89.3(3)
C(1)-Re(1)-C(11) 175.8(3) $C(7) - Re(1) - C(11)$	91.5(4)
C(8)-Re(1)-C(11) 96.5(3) $C(9) - Re(1) - C(11)$	91.6(3)
C(10)-Re(1)-C	(11) 95.1(4) C(2)-Mn(1)-C(3)	37.2(3)
C(2)-Mn(1)-C(4) 67.8(3) C(3)-Mn(1)-C(4)	39.1(3)
C(2)-Mn(1)-C(5) 78.2(3) C(3)-Mn(1)-C(5)	69.2(3)
C(4) - Mn(1) - C(5) 38.7(3	C(2) - Mn(1) - C(6)	62.7(3)
C(3) - Mn(1) - C(1)	6) 77.7(3	C(4) - Mn(1) - C(6)	66.8(3)
C(5) = Mn(1) = C(1)	6) 36.6(3	C(2) - Mn(1) - C(12)	88.5(3)
$C(3) = M_{2}(1) = C(1)$	121 124 3/3	C(4) = Mn(1) = C(12)	150.8(4)
C(5) - Mn(1) - C(1)	12) 122 2/4	C(6) = Mn(1) = C(12)	87.6(3)
C(3)-Mi(1)-C($C(3) = M_{\rm P}(1) = C(13)$	86 8 (4)
C(2)-Mn(1)-C(C(5) - Mn(1) - C(13)	141 7(3)
C(4) - Mn(1) - C(C(12) = m(1) - C(13)	95 9/4)
C(6) - Mn(1) - C(13) 163.0(4	C(12) = MI(1) = C(13)	120 1(2)
C(2) - Mn(1) - C(14) 167.2(3	C(3) - Hn(1) - C(14)	139.1(3)
C(4)-Mn(1)-C(14) 103.5(4	C(5) - Mn(1) - C(14)	89.1(4)
C(6) - Mn(1) - C(14) 105.6(3) $C(12) - Mn(1) - C(14)$	95.5(4)
C(13)-Mn(1)-C	(14) 90.6(4) Re(1)-C(1)-C(2)	114.4(5)
Re(1)-C(1)-C(6) 116.6(5) C(2)-C(1)-C(6)	102.5(7)
Mn(1)-C(2)-C(1) 94.4(5) Mn(1)-C(2)-C(3)	67.5(5)
C(1)-C(2)-C(3) 122.1(7) Mn(1)-C(3)-C(2)	75.4(5)
Mn(1) - C(3) - C(4) 68.9(5) C(2)-C(3)-C(4)	118.5(8)
Mn(1) - C(4) - C(4)	3) 72.0(5) Mn(1)-C(4)-C(5)	72.1(5)
C(3)-C(4)-C(5) 118.7(8) Mn(1)-C(5)-C(4)	69.2(5)
Mp(1)-C(5)-C(6) 76.8(5	C(4) - C(5) - C(6)	119.3(8)
Mn(1) - C(6) - C(6)	1) 93.7(5	Mn(1) - C(6) - C(5)	66.6(5)
C(1)-C(6)-C(5) 123.2(8	Re(1) - C(7) - O(1)	178.0(7)
Re(1) = C(8) = O(2) 174.2(7) $Re(1) - C(9) - O(3)$	178.7(8)
$R_{0}(1) = C(10) = 0$	(4) 176 0(7	Re(1) = C(11) = O(5)	178.9(8)
$M_{\rm m}(1) = C(10) = 0$	(6) 178 2 (8	Mn(1) - C(13) - O(7)	177.2(8)
$M_{\rm m}(1) = C(12) = 0$	(0) 179 1/7		

Tab. 2. Atomkoordinaten (\times 10⁴) und isotrope Thermalparameter [\times 10⁻¹ pm²] von 1

	x	У	z	U
Re(1)	658(1)	6231(1)	8111(1)	25(1) ^{a)}
Mn(1)	1240(2)	6921(1)	5310(1)	26(1) ^a
C(1)	74(11)	6380(6)	6768(5)	25(2)
C(2)	327(11)	7445(7)	6461(5)	27(2)
C(3)	2160(11)	7828(7)	6297 (5)	32(2)
C(4)	3643(12)	7127(7)	6120(5)	33(2)
C(5)	3194(13)	6084(7)	6093(5)	32(2)
C(6)	1360(11)	5762(7)	6283(5)	29(2)
C(7)	1990(12)	7588(7)	8124(5)	32(2)
0(1)	2704 (9)	8368(5)	8117(4)	43(2)
C(8)	-1957(11)	6912(7)	8040(5)	29(2)
0(2)	-3462(9)	7265(5)	7939(4)	42(2)
C(9)	-694(11)	4886(7)	8034(5)	31(2)
0(3)	-1431(9)	4111(6)	7995(4)	45(2)
C(10)	3176(12)	5536(7)	7949(5)	32(2)
0.(4)	4605(9)	5129(5)	7810(4)	42(1)
C(11)	955(13)	6143(7)	9255(6)	35(2)
0(5)	1100(10)	6103(5)	9914(4)	49(2)
C(12)	-1262(11)	6517(7)	5069(5)	28(2)
0(6)	-2876(10)	6281(5)	4928(4)	44(2)
C(13)	1055(11)	8091(7)	4774(5)	30(2)
0(7)	926(10)	8882(5)	4450(4)	46(2)
C(14)	2298(12)	6290(6)	4510(5)	32(2)
0(8)	2920(9)	5898(6)	3993(4)	44(2)

a) Äquivalente isotrope U, berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

400, Maximum bei I > 3000 counts/sec), 8048 Reflexe gemessen $(\pm h, \pm k, \pm l)$, zu 2702 unabhängigen gemittelt ($R_{Merge} = 0.0197$), davon 2411 beobachtet $[I > 2\sigma(I)]$, empirische Absorptionskorrektur anhand von 180 Messungen im U-Scan (min. relative Transmission 0.42). - Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson und Fourier-Recycling, 107 Parameter verfeinert (Re, Mn anisotrop, C, O isotrop), H-Atome in berechnete Lagen eingesetzt, R = 0.0470, $R_w =$ 0.0484, $[w = 1/(\sigma^2(F) + 0.0005 \cdot F^2)]$, maximale Restelektronen-

dichte $1.79 \cdot 10^{-6}$ e/pm³, minimale Restelektronendichte $1.65 \cdot 10^{-6}$ e/pm³. – Tab. 1 enthält Bindungslängen und -winkel, Tab. 2 Atomkoordinaten und Thermalparameter.

 W. Beck, B. Olgemöller, J. Organomet. Chem. 127 (1977) C45;
 B. Olgemöller, W. Beck, Chem. Ber. 114 (1981) 867; K. Raab, U. Nagel, W. Beck, Z. Naturforsch., Teil B, 38 (1983) 1466; W. Beck,

K. Raab, U. Nagel, W. Sacher, Angew. Chem. 97 (1985) 498; Angew. Chem. Int. Ed. Engl. 24 (1985) 505; W. Beck, H.-J. Müller, U. Nagel, Angew. Chem. 98 (1985) 739, Angew. Chem. Int. Ed. Engl. 25 (1986) 734; H.-J. Müller, W. Beck, J. Organomet. Chem. 330 (1987) C13; H.-J. Müller, U. Nagel, W. Beck, Organometallics 6 (1987) 193.

- ³⁾ R. C. Bush, R. A. Jacobson, R. J. Angelici, J. Organomet. Chem. 323 (1987) C25
- ⁴⁾ Entsprechend der Reaktion setzen sich auch η^6 -Toluol- und η^6 -Xylol(tricarbonyl)mangan- und -rhenium-Kationen mit [Re- $(CO)_{5}^{-}$ zu - im Vergleich zu 1 instabilen - Cyclohexadienylverbrückten Komplexen um.
- ⁵⁾ G. Al-Takhin, J. A. Connor, H. A. Skinner, J. Organomet. Chem. 259 (1983) 313.
- ⁶⁾ M. F. Semmelhack, H. T. Hall jr., R. Fanna, M. Yoshifuji, G. Clark, T. Bargar, K. Hirotsu, J. Clardy, J. Am. Chem. Soc. 101 (1979) 3535.
- ⁽¹⁾ M. R. Churchill, F. R. Scholer, *Inorg. Chem.* 8 (1969) 1950; S. D. Ittel, J. F. Whitney, Y. K. Chung, P. G. Willard, D. A. Sweigart, *Organometallics* 7 (1988) 1323.
 ⁸ R. Hoffmann, P. Hoffmann, *J. Am. Chem. Soc.* 98 (1976) 598.
 ⁸ R. Hoffmann, P. Hoffmann, *J. Chem. Soc.* 98 (1976) 598.
- 9) P. J. C. Walker, R. J. Mawby, J. Chem. Soc., Dalton Trans. 1973, 622.
- ¹⁰⁾ G. A. M. Munro, P. L. Pauson, J. Chem. Soc., Chem. Commun. 1976, 134; W. Lamanna, M. Brookhart, J. Am. Chem. Soc. 102 (1980) 3490.
- ¹¹⁾ G. Winkhaus, L. Pratt, G. Wilkinson, J. Chem. Soc. 1961, 3807. ¹²⁾ Weitere Einzelheiten zur Kristallstruktur können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinter-legungsnummer CSD-53252, der Autorennamen und des Zeitschriftenzitates angefordert werden.

[143/88]

¹⁾ J.-E. Bäckvall, J. L. Davidson, S. G. Davies, M. L. H. Green, D. M. P. Mingos, J. A. S. Howell, P. Powell in Reactions of Coordinated Ligands (P. S. Braterman, Hrsg.), Bd. 1, Plenum Press, New York 1986 und dort zit. Literatur. - Für die Addition von organischen Nucleophilen an koordiniertes Benzol Siche: L.A. P. Kane-Maguire, E. D. Honig, D. A. Sweigart, Chem.
 Rev. 84 (1984) 525; R.C. Bush, R.J. Angelici, J. Am. Chem. Soc.
 108 (1986) 2735; D.A. Sweigart, Y.K. Chung, E. D. Honig, T.J.
 Alavosus, W.A. Halpin, J.C. Williams, P. G. Willard, N.G. Connelly in Organometallic Syntheses (R. B. King, Hrsg.), Bd. 4, Elsevier, Amsterdam 1988.